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Σ
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INTRODUCTION
	 Studying associating systems in the analytical ultracentrifuge 
allows one to fully characterize the thermodynamics of these association 
reactions at equilibrium. An advantage to the experimenter is that the 
macromolecule can be studied directly in solution under conditions 
of choice. By varying these conditions, several parameters can be 
determined: molecular weights, stoichiometry, association constants 
(tightness of binding), nonideality coefficients, and thermodynamic 
parameters such as the changes in Gibbs free energy, enthalpy, and 
entropy associated with binding (ΔG, ΔH, and ΔS). These parameters 
can be studied with both self-associating systems and associations of 
unlike species (hetero-associations). This primer will describe both simple 
and complex methods needed to examine self-associating systems in an 
approach requiring little or no advance knowledge of the characteristics 
of the interactions involved. Hetero-associations require a different 
approach and will be covered in a separate review.

	 The initial characterization of an association reaction involves 
several experiments to obtain information about the homogeneity of 
the system, monomer molecular weight, reversibility of the reaction, 
stoichiometry, and nonideality. These experiments require various run 
conditions and the use of data analysis procedures and diagnostic plots 
that provide estimates for these characteristics. The most straightforward 
initial approach is to measure molecular weights under denaturing vs. 
native conditions. A simple average molecular weight determination 
will reveal if an association is taking place and provide an initial estimate 
of stoichiometry. Further diagnostic plots may give better estimates of 
stoichiometry, reversibility, and nonideality.

	 When initial experiments yield sufficient information, more 
detailed analysis can be undertaken. Through the use of nonlinear 
regression techniques, a more accurate analysis of the system is 
accomplished by direct fitting of the primary data to a model describing 
the association. By comparing goodness of fit of the experimental data to 
the calculated data, a model best describing the association can usually be 
discerned. Care must be taken in statistical analysis to ensure that the fit 
of the data to the selected model is significantly better than to alternative 
models. If not, more experiments may be needed to distinguish between 
models. Fitting in this manner can give accurate determination of 
average molecular weights, (Mn, Mw, and Mz), association constants, and 
nonideality as measured by virial coefficients. Also, this procedure allows 
one to confirm stoichiometries estimated from other experiments and to 
incorporate baseline errors in the data.



2

	 In all calculations, several parameters are needed: ω2, 
determined from the rotor speed; R, the gas constant; T, the temperature 
in Kelvin; v̄, the partial specific volume determined from the sample 
composition or by measurement, and ρ, the density determined from the 
solvent composition. The last two are the most variable in a system and 
can therefore lead to the greatest error in calculations.

	 From a single experiment, only the buoyant molecular weight is 
measurable directly in the analytical ultracentrifuge. This value, M(1 - v̄ρ), 
is the molecular weight of the sample corrected by a buoyancy factor 
due to displaced solvent. In the case of multiple species, M(1 - v̄ρ) will 
be a statistical average of the molecular weights of all species present 
in solution. Different molecular weight averages can be determined by 
various treatments of sedimentation equilibrium data. More detailed 
analyses of the associations as described above require that the data from 
several experiments be examined simultaneously.

	 Three parameters necessary for the analysis of self-associating 
systems are not determined by run conditions. These are v̄, ρ, and 
monomer molecular weight. Calculation of these parameters is 
needed to begin an analysis. Calculations of v̄ and ρ are described in 
Appendices B and C, respectively. If sample composition is not known, 
monomer molecular weight can be determined experimentally from 
a run in denaturing conditions. Also, alternative methods such as mass 
spectrometry give accurate subunit molecular weight determinations.
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MOLECULAR WEIGHT 
DETERMINATION 
BY SEDIMENTATION 
EQUILIBRIUM
	 When sedimentation and diffusion come to a state of 
equilibrium, no apparent movement of solute occurs. The equilibrium 
concentration distribution is dependent on the buoyant molecular weight, 
M(1 - v̄ρ); angular velocity, ω2; and temperature. Since the concentration 
distribution is dependent on the buoyant molecular weight, it is obvious 
that accurate values of v̄ and ρ are necessary for the determination of 
molecular weight from equilibrium conditions.

	 From the Lamm (1929) equation describing movement of 
molecules in a centrifugal field, the following equation can be derived for 
a single, thermodynamically ideal solute:

	 A plot of ln(c) vs. r2 will yield a straight line with a slope 
proportional to M. For nonideal or associating systems, or when multiple 
species are present, a straight line is not obtained, and more rigorous 
analysis is needed. Nevertheless, as shown in Figure 1, this analysis 
provides a first approximation of M and can indicate thermodynamic 
nonideality or polydispersity in the sample.

Equation 1
ln(cr )

r2
=

M(1 − vρ)ω2

2RT
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	 From the graph it is apparent that nonideality and polydispersity 
have opposite effects so that the presence of both in a sample may be 
offsetting and thus not discernible. It should also be noted that small 
amounts of aggregation, such as 10% or less of a sample present as a 
dimer, will not be detectable by this method.

	 The slope of the ln(c) vs. r2 plot is one of a group of statistical 
averages of the molecular weight and is known as the weight-average 
molecular weight, Mw. Other treatments of sedimentation equilibrium 
data allow determination of number-average (Mn), z-average (Mz), and 
higher order molecular weight averages (Correia and Yphantis, 1992)  
(see Figure 2).

b
a

c

r2

ln (c)

Figure 1. Graph of ln(c) vs. r2 showing curves from ideality
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	 If the solution is polydisperse, then sedimentation equilibrium 
experiments yield an average molecular weight, not that of any single 
component. Mn , Mw, and Mz give increasing significance, respectively, to 
those components in a mixture with the highest molecular weights. Thus, 
for a polydisperse system, Mn < Mw < Mz. If a solution is monodisperse, 
then Mn = Mw = Mz. A comparison of the molecular weight averages can 
therefore provide a good measure of homogeneity.

	 If the plot of ln(c) vs. r2 is nonlinear, tangents to the curve yield a
weight-average molecular weight for the mixture of species present at 
each radial position. In this manner the user can obtain molecular weight 

Mn =

Mw = 

Mz =
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(weight-average)

(z-average)
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Figure 2. Molecular weight averages. a) Calculation of molecular weight averages; 
b) graph showing distribution in a polydisperse system.
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as a function of increasing solute concentration moving down the cell. 
Overlaying plots of data from samples of different starting concentrations 
will provide information about the presence of more than one species 
in the cell, the ability to distinguish polydisperse and self-associating 
systems, and, in the latter case, an estimate of the monomer molecular 
weight and stoichiometry.
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INITIAL EXPERIMENTAL 
APPROACH TO 
ANALYZING SELF-
ASSOCIATING SYSTEMS
	 An initial level of analysis involves a characterization of the 
sample using diagnostic graphs. This level of analysis is qualitative and 
simply determines if the sample is homogeneous, ideal, and whether or 
not a self-association is occurring. In many cases, estimates of monomer 
molecular weight and stoichiometry are also possible at this level, but 
quantitative determination of thermodynamic parameters will require 
more rigorous nonlinear least-squares fitting procedures that will be 
described in more detail in a following section. Qualitative analyses do, 
however, provide excellent starting guesses for models in more 
complex analyses. 

	 To determine these parameters, data from runs under both 
denaturing and nondenaturing conditions need to be compared. The 
two most commonly used denaturants are 8 M urea and 6 M guanidine-
HCl. Both have effects on v which should be taken into account during 
data analysis. In addition, data from samples run at multiple starting 
concentrations and multiple rotor speeds will be required. This approach 
is described by Laue (1992).

	 Typically, a range of starting concentrations with absorbances 
from 0.1 to 1.0 is employed. The simplest way to obtain this range of 
concentrations is to perform a serial dilution. Generally, the absorbance 
variation is scaled for a single wavelength, but if the extinction coefficients 
are known for several wavelengths, this added information can be used to 
convert all absorbances to the same concentration scale using the Beer-
Lambert Law,* which permits an even wider range of concentrations to 
be used. 

	 Rotor speeds are chosen to straddle the estimated optimum 
rotor speed for the sedimentation equilibrium run. Figure 3 shows 
optimum speeds for an equilibrium run if either the molecular weight or 
sedimentation coefficient can be estimated for the sample.

* Beer-Lambert Law: A = log(I0/I) = εcl, where I0 = intensity of the 
incident radiation; I is the intensity of light transmitted through a 
pathlength l in cm, containing a solution of concentration c moles per 
liter; ε is the molar extinction coefficient with units liter mole-1 cm-1; 
A is the absorbance.
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	 A set of at least three speeds is chosen to yield significantly 
varied data for the diagnostics (Laue, 1992). For three speeds, the ratio 
of the squares of the two slower speeds should be 1.4 or greater, and 
the ratio of the squares of the fastest and slowest speeds should be 3 or 
greater. For example, if an optimum rotor speed is estimated as 20,000 
rpm, a good choice of three speeds would be 16,000, 20,000, and 30,000 
rpm [(20,000/16,000)2 = 1.56 and (30,000/16,000)2 = 3.52]. Data should 
be acquired at the lowest speed first, then at progressively higher speeds 
to minimize the time to reach equilibrium. If data need to be acquired at 
a slower speed, it is advantageous to stop the rotor and gently shake the 
cells rather than simply lowering the speed, because redistribution from 
diffusion is quite slow.
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Figure 3. Optimum speeds for equilibrium runs if either molecular weight or 
sedimentation coefficient can be estimated. (Reprinted from Chervenka, 1970.)
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MOLECULAR WEIGHT VS. 
CONCENTRATION
DIAGNOSTIC GRAPHS
	 The data collected as described in the preceding section allow 
the apparent molecular weight to be plotted as a function of sample 
loading concentration and rotor speed. Since the sample was run under 
denaturing conditions, Mw can also be calculated relative to monomer 
molecular weight. These graphs provide an initial characterization of the 
system with respect to: 1) homogeneity, 2) nonideality, 3) self-association 
(with limited information about stoichiometry), and 4) polydispersity.

	 Laue (1992) uses a plot of the apparent weight-average 
molecular weight vs. the midpoint absorbance (Figure 4). If the 
sample obeys the Beer-Lambert Law, absorbance and concentration 
will be proportional.

	 This graph is useful in the detection of three possible 
conditions in the sample run with multiple concentrations. If the 
molecular weight remains constant with changing absorbance 
(concentration), a single ideal species is indicated. If the molecular 
weight decreases with increasing absorbance, this indicates 
thermodynamic nonideality. Finally, if the molecular weight increases 
with increasing concentration, a self-association may be occurring. In 
this last case, if a wide enough concentration range is examined, the 
molecular weight at low concentration will approach that of the 
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0.00
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Figure 4. Diagnostics graph providing a qualitative characterization of the
solution behavior of macromolecules. (Reprinted from Laue, 1992.)
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smallest species in the reaction, and at higher concentrations it will 
approach that of the largest species. If the monomer molecular weight 
has been determined under denaturing conditions, this provides 
estimates of the stoichiometry of these limiting species. As is the case 
for plots of ln(A) vs. r2, association and nonideality have opposing effects. 
So, if both conditions are present, determination of an upper limit for 
oligomerization is difficult. Similar problems may arise due to limited 
solubilities at higher concentrations.

	 More information can be obtained from plots of molecular 
weight vs. concentration from a single sample by examining the apparent 
weightaverage molecular weight as a function of increasing radius. One 
method is to use nonlinear regression techniques to calculate parameters 
that allow determination of molecular weight for each radial position 
in the cell, then to graph the molecular weight vs. the corresponding 
absorbance value (Formisano et al., 1978). Another method is to take 
subsets of the data, determine molecular weight from linear regression 
analysis with a plot of ln(A) vs. r2, and finally graph the molecular weight 
against the midpoint absorbance of the subset. Other methods are 
used in some cases to avoid the systematic errors that occur in some 
calculations (Dierckx, 1975). Mw vs. concentration calculations provide 
information similar to that obtained from a single point per sample, but, 
in addition, a diagnostic graph that distinguishes between self-association 
and polydispersity may be obtained (Figure 5).

	 For a self-associating system, the apparent weight-average 
molecular weight will increase with increasing concentration, and the 
plots of Mw vs. absorbance will coincide. As with the previous diagnostic 
graphs, the limiting molecular weights will approach that of the monomer 
at the lower concentrations and that of the largest species at the higher 
concentrations. Nonideality will cause a downward trend in the slope and 
will prevent an accurate estimation of the stoichiometry from this plot.

cr 

Mw

cr 

MwA B

Figure 5. Multiple data sets graphed in terms of molecular weight vs. concentration.
a) Self-associating system; b) polydisperse system.
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	 In the case of polydispersity, however, the Mw vs. absorbance 
plots will not coincide but will be displaced to the right with increasing 
sample starting concentration. Nonoverlapping weight-average molecular 
weight distributions will be observed for different loading concentrations. 
This observation is due to the fact that the same molecular weight 
distribution is present regardless of sample concentration.

	 Polydispersity and reversibility of a self-association reaction can 
be confirmed by graphs of apparent molecular weight as a function of 
rotor speed (Figure 6).

	 For both homogeneous, noninteracting samples and 
homogeneous, self-associating samples, molecular weight is independent 
of rotor speed as long as all associating species are detectable in the 
concentration gradient. Polydisperse samples, however, display a 
systematic decrease in molecular weight with increasing rotor speed.

	 Caution is required due to the opposing effects of association 
and nonideality on concentration dependence of molecular weight. The 
presence of both phenomena can produce apparently ideal behavior. The 
effect of nonideality may not be apparent except in higher concentrations. 
In this case, the molecular weight will appear to decrease with 
increasing concentration. This situation makes estimation of association 
stoichiometry difficult. These diagnostic plots should only be considered 
qualitative and not used for numeric determination of any molecular 
weight, association, or nonideality parameters.

Figure 6. Diagnostics graph providing a qualitative characterization of the
solution behavior of macromolecules. (Reprinted from Laue, 1992.)

1.20

0.90

0.60

0.30

0.00
1.00 1.25 1.50 1.75 2.00

DSPGI Core

LexA

rpm/rpm0

M
w

,a
p
p
/M



12

NONLINEAR 
LEAST-SQUARES 
ANALYSIS
	 Least-squares methods are one way to obtain a statistical 
fit of the experimental data to a proposed model and to obtain best 
estimates for unknown parameters (Johnson, 1992; Johnson and 
Faunt, 1992; Johnson and Frazier, 1985; Johnson et al., 1981). The major 
advantage of these methods is that data can be analyzed directly without 
transformation. Also, more complex models can be tested when obvious 
differences between experimental and fitted data exist. Computer 
analysis has greatly facilitated these methods. Without the calculating 
power of the computer, only the conventional graphical analyses with 
their inherent assumptions and approximations would be possible. Three 
basic features are needed for simple nonlinear least-squares analysis: 
1) an algorithm for calculating least-squares, 2) a mathematical model 
to describe the system, and 3) statistical analysis to measure goodness 
of fit of a proposed fitted model to the experimental data. A practical 
approach to data analysis using these methods and the Beckman Optima 
XL-A Data Analysis Package is described in Appendix A.

LEAST-SQUARES METHODS
	 In this analysis, a series of curves is calculated to locate a “best” 
fitting model of the data. Each iteration leads to a better approximation 
of the curve parameters until the approximations converge to stable 
values for the parameters being varied. For least-squares analysis, the 
differences between the fitted function and the experimental data are 
squared and summed, and the parameters varied so as to minimize this 
sum. Ideally, the reduction continues until a global minimum is reached. 
Minimization of least-squares does not always provide the correct set of 
model parameters. Therefore, additional statistical and graphical analysis 
is usually needed in addition to curve fitting techniques.

	 The graphs in Figure 7 show the sum of squares minima in 
relation to two parameters.
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	 The values for the two parameters are on the x- and y-axis, 
respectively, and for the sum of squares on the z-axis. In Figure 7a the 
error space is well defined for both parameters, and the algorithm would 
be able to calculate them to a high precision. Figure 7b, however, shows 
an example where the parameter plotted on the y-axis is well defined, 
but the parameter plotted on the x-axis is not. In this case, the algorithm 
would be able to calculate the y parameter to a high precision, but would 
have more difficulty calculating the x parameter to the same precision. 
In some cases, the error space can be flat or contain several minima that 
may yield different answers depending on starting guesses.

	 Many numerical algorithms are available for determining 
parameters by least-squares and are too numerous to be listed here. 
The Marquardt method (1963) is the most commonly used. It combines 
the advantages of two other methods, Gauss-Newton and Steepest 
Descent (Bevington, 1992), to obtain a more robust convergence. The 
Nelder-Mead algorithm (1965), also known as the Simplex method, is a 
geometric, rather than a numeric, procedure. The XL-A Data Analysis 
Package has incorporated a modification of the Gauss-Newton method 
developed by Johnson et al. (1981) in the multifit program analyzing 
multiple data sets simultaneously. Also accessible is the Marquardt 
algorithm for single data file analysis.

  

A B

Figure 7. Error surface graphs showing the sum of squares graphed on
z-axis. Two variables are shown on the x- and y-axes. a) Well-defined minimum;
b) well-defined for y but not x.
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MATHEMATICAL MODELS
Single ideal species
	 When a method of least-squares analysis is used, a mathematical 
equation, or model, describing the distribution of the macrosolute in 
the cell is needed for the fitting procedure. The initial model chosen 
can be one that seems best to describe the system as discerned from 
the diagnostic plots described earlier. From goodness of fit analyses, 
alternative models are then analyzed to find the best description of the 
experimental data.

	 As described previously, the Lamm partial differential equation 
describes all movement of molecules in a centrifugal field. At equilibrium, 
no apparent movement of solute occurs due to the equalization of 
sedimentation and diffusion. From this observation, an exponential 
solution to the Lamm equation can be derived (Equation 2). This 
equation, with cr and radius as the dependent and independent variables, 
respectively, is directly related to the data as it is obtained from the 
analytical ultracentrifuge.

where cr  = concentration at radius r
cr0

 = concentration of the monomer at the reference radius r0
ω = angular velocity
R = gas constant (8.314 × 107 erg/mol·K)
T = temperature in Kelvin
M = monomer molecular weight
v̄ = partial specific volume of the solute
ρ = density of solvent.

	 Ultracentrifuge data can be fitted to this equation using optical 
absorbance in place of concentration, provided the sample obeys the 
Beer-Lambert Law across the full range of absorbance. Final results are 
usually converted back to concentration.

	 Equation 2 describes distribution of a single ideal species at 
equilibrium. Fitting the data to this model using nonlinear regression 
analysis yields an apparent weight-average molecular weight for all solutes 
in the cell when the baseline offset is constrained to zero. Including 
the baseline offset will result in determination of a z-average molecular 
weight. Recalling from Figure 2 that these average molecular weights 
are expressed in terms of concentration, the molecular weights are not 
well defined averages if the extinction coefficients are not known for all 
components because the data used are absorbance values.  

cr = cr0 e[ ω2
2RT M(1−vρ)(r2 −r02 )]Equation 2
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	 Baseline offset results from a difference in the absorbance 
between the reference and the solvent in which the sample is dissolved. 
Usually, extensive dialysis procedures are used to minimize the difference. 
If, however, a difference remains, the baseline term must be included in 
the mathematical model. With sufficient data, the baseline can be varied 
as an additional parameter, but the calculated values of other parameters 
such as molecular weight are affected greatly by the baseline value. The 
baseline value can be determined experimentally by a high-speed run 
where the meniscus is depleted of all sample and the absorbance read 
directly from the data near the meniscus. The experimental approach is 
limiting when the meniscus cannot be depleted.

Self-association
	 The model equation for a self-associating system is similar to that 
of a single ideal species except that the total absorbance at a given radius 
is the sum of absorbances of all species at that radius. Each term of the 
summation will be a distribution function similar to that for a single ideal 
species. Take, for example, the simple equilibrium:

monomer     n-mer

	 At equilibrium, the total absorbance as measured in 
the analytical ultracentrifuge can be shown as the sum of two 
species (Figure 8).
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	 The equation that describes the total macrosolute distribution 
for this monomer–n-mer equilibrium is as follows:

	 Each exponential in the summation describes the equilibrium 
distribution of an individual species in the equilibrium, the first being 
the monomer and the second the n-mer. The stoichiometry is set in the 
model by an integer value for n, such that the n-mer molecular weight is n 
times the monomer molecular weight, M.

	 For the monomer–n-mer equilibrium reaction, the association 
constant is:

	 Substituting into equation 3, gives a new model to solve directly 
for Ka without the cn-mer term:

	 Rearranging the equation constrains the cmonomer,r0 and Ka terms 
to positive numbers: 

	 Similar models for more than two species in equilibrium can be 
derived by using the same method of describing the total concentration 
as the summation of all species present. Usually, not more than three 
species can be distinguished by analytical ultracentrifugation data 
However, a model is included in the data analysis software that describes 
the equilibrium distribution of up to four ideal species (equation 7):

    

ctotal = cmonomer, r0
e[

ω2

2RT
M(1−v ρ)(r2 −r0

2 )]

+ cn−mer,r0
e[

ω2

2RT
nM(1−v ρ)(r2 −r0

2 )]
Equation 3

Ka = cn-mer/(cmonomer)nEquation 4

  

ctotal = cmonomer,r0
e[

ω 2

2RT
M(1−v ρ)(r2 −r0

2 )]

 +  Ka (cmonomer,r0
)n e[

ω 2

2RT
nM(1−v ρ)(r2 −r0

2 )]
Equation 5

    

ctotal,r = e
[ln(c monomer,r0

)+
ω 2

2RT
M(1−v ρ)(r 2 −r 0

2 )]

+ e
{n[ln(cmonomer,r0

)]+ln(K a )+
ω 2

2RT
nM(1−v ρ)(r 2 −r 0

2 )}
Equation 6
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where cr = concentration at radius r
cmonomer,r0 = concentration of the monomer at the reference 
 radius r0
M = monomer molecular weight
n2 = stoichiometry for species 2
Ka,2 = association constant for the monomer–n-mer 
 equilibrium of species 2
n3 = stoichiometry for species 3
Ka,3 = association constant for the monomer–n-mer 
 equilibrium of species 3
n4 = stoichiometry for species 4
Ka,4 = association constant for the monomer–n-mer 
 equilibrium of species 4
E = baseline offset

	 Rearranging as before to constrain cmonomer,r0 and Ka values:

    

cr = cmonomer,r0
e
[(1−v ρ)ω 2

2RT
M(r2 −r0

2 )]
+ (cmonomer,r0

)n2 Ka,2e[(1−v ρ)ω 2

2RT
n2M(r2 −r0

2 )]
+ (cmonomer,r0

)n3 Ka,3e[(1−v ρ)ω 2

2RT
n 3M(r2 −r0

2 )]
+ (cmonomer,r0

)n4 Ka,4e[(1−v ρ)ω 2

2RT
n 4M(r2 −r0

2 )]+ E

Equation 8

    

cr = cmonomer,r0
e
[(1−v ρ)ω 2

2RT
M(r2 −r0

2 )]
+ (cmonomer,r0

)n2 Ka,2e[(1−v ρ)ω 2

2RT
n2M(r2 −r0

2 )]
+ (cmonomer,r0

)n3 Ka,3e[(1−v ρ)ω 2

2RT
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	 The stoichiometries n2-n4 are defined by the user, and the 
respective association constants are for the monomer–n-mer equilibrium 
of each aggregate. Association constants for n-mer–n-mer equilibria 
can be calculated from respective monomer–n-mer constants, but 
these mechanisms of reaction cannot be confirmed from equilibrium 
concentration data. For example, with a monomer-dimer-trimer 
equilibrium, the model (equation 8) will calculate the association 
constants for the monomer-dimer and monomer-trimer equilibria.  
If there is evidence that a dimer-trimer equilibrium is present, it  
can be calculated:

	 Usually, association constants are expressed in terms of 
concentration. Since data from the analytical ultracentrifuge are in 
absorbance units, some assumptions are usually made in the calculation of 
these constants. The extinction coefficient for an n-mer in the 
monomer–n-mer equilibrium is assumed to be n times that of the 
monomer. So, if an association constant is calculated in terms of the 
absorbance data, conversion to one based on concentration must include 
this assumption (Becerra et al., 1991; Ross et al., 1991). Equation 10 shows 
this conversion if the extinction coefficient of the monomer is known:

	 Similarly, for a monomer-trimer system the conversion is:

Nonideality
	 Nonideal behavior of an associating system resulting from charge 
or crowding can be incorporated into the model (equation 12). The 
nonideality is described by the second virial coefficient, B (Haschmeyer 
and Bowers, 1970; Holladay and Sophianopolis, 1972, 1974).

K1-2,conc = c2/c1
2 = K1-2,absεl/2;

Beer-Lambert Law: A = εcl or c = A/εlEquation 10

K1-3,conc = c3/c1
3 = K1-3,absε2l2/3Equation 11

cr,total = e
[ln(cmonomer,r0

)+
(1−vρ)ω 2

2RT
M(r2 −r0

2 )−BM(ctotal,r −ctotal,r0
)]

+e
[ln(cmonomer,r0

)+ln(Ka,2 )+
(1−vρ)ω 2

2RT
n2M(r2 −r0

2 )−BM(ctotal,r −ctotal,r0
)]

+e
[ln(cmonomer,r0

)+ln(Ka, 3)+
(1−vρ)ω 2

2RT
n3M(r2 −r0

2 )−BM(ctotal,r −ctotal,r0
)]

+e
[ln(cmonomer,r0

)+ln(Ka,4)+
(1−vρ)ω 2

2RT
n4M(r2 −r0

2 )−BM(ctotal,r −ctotal,r0
)]

+ E

Equation 12

K1-2 = cdimer/(cmonomer)2, K1-3 = ctrimer/(cmonomer)3

so K2-3 = ctrimer/cmonomer • cdimer = K1-3/K1-2Equation 9B

Equation 9A
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	 This model can also be used for fitting all previously described 
equilibria with appropriate constraints. For example, setting the virial 
coefficient value to zero effectively removes all nonideality terms, and the 
model is the same as that described for an ideal self-associating system. 
Also, constraining any of the association constant values to an extremely 
small number, e.g., 1 × 10-20, effectively removes the exponent term 
describing the distribution of the corresponding n-mer. This constraint 
can make the same model usable for one to four species in the cell.

Fitting data to a model
	 Once a model has been chosen along with the algorithm for 
analysis, the user is ready to begin the fitting procedure. The basis 
for fitting is to set initial guesses for all parameters in the model and 
either to constrain these to the set value or to allow them to float in 
the least-squares calculation. The constrain/vary choice will be dictated 
by experimental conditions and the thermodynamic parameters to 
be determined. Certain parameters are determined by experimental 
conditions and must be provided prior to the fitting procedure. These 
include angular velocity (ω2) determined from the rotor speed, 
temperature, and characteristics of the solute and solvent ( v̄ and ρ). A 
reference radius will also be chosen for the fitting procedure. In all cases, 
the absorbance or concentration at this reference radius will be allowed 
to float in the calculations. All other parameters are chosen by the user.

	 The amount of data will be the factor limiting the complexity 
of the models that can be distinguished statistically. For example, with 
a single data set, floating variables should be limited to two. Even then, 
confidence in answers obtained is not always good enough. So, as a 
general rule, multiple data sets with varying conditions (usually speed and 
starting sample concentration) should be used. In this case, an algorithm is 
needed that can fit to the multiple data sets simultaneously.

	 The stoichiometries n2-n4 are defined by the user, and the 
respective association constants are for the monomer–n-mer equilibrium 
of each aggregate. Association constants for n-mer–n-mer equilibria 
can be calculated from respective monomer–n-mer constants, but 
these mechanisms of reaction cannot be confirmed from equilibrium 
concentration data. For example, with a monomer-dimer-trimer 
equilibrium, the model (equation 8) will calculate the association 
constants for the monomer-dimer and monomer-trimer equilibria.  
If there is evidence that a dimer-trimer equilibrium is present, it  
can be calculated:

	 Usually, association constants are expressed in terms of 
concentration. Since data from the analytical ultracentrifuge are in 
absorbance units, some assumptions are usually made in the calculation of 
these constants. The extinction coefficient for an n-mer in the 
monomer–n-mer equilibrium is assumed to be n times that of the 
monomer. So, if an association constant is calculated in terms of the 
absorbance data, conversion to one based on concentration must include 
this assumption (Becerra et al., 1991; Ross et al., 1991). Equation 10 shows 
this conversion if the extinction coefficient of the monomer is known:

	 Similarly, for a monomer-trimer system the conversion is:

Nonideality
	 Nonideal behavior of an associating system resulting from charge 
or crowding can be incorporated into the model (equation 12). The 
nonideality is described by the second virial coefficient, B (Haschmeyer 
and Bowers, 1970; Holladay and Sophianopolis, 1972, 1974).

K1-2,conc = c2/c1
2 = K1-2,absεl/2;

Beer-Lambert Law: A = εcl or c = A/εlEquation 10

K1-3,conc = c3/c1
3 = K1-3,absε2l2/3Equation 11

cr,total = e
[ln(cmonomer,r0

)+
(1−vρ)ω 2

2RT
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2 )−BM(ctotal,r −ctotal,r0
)]

+ E

Equation 12
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	 Analysis of multiple files separately can also be used to check the
reversibility of an associating system. If the same association constant is
obtained from runs at multiple speeds and starting concentrations, the 
association is reversible.

Confidence intervals
	 Confidence intervals are a measure of the precision of 
individual parameters based on a single set of data. However, the 
interval determined for a parameter can also serve as a measure of 
the accuracy of the estimated parameter (Johnson and Faunt, 1992). A 
number of methods of varying complexity exist to evaluate confidence 
intervals and, thus, the validity of the approximation (Johnson and 
Faunt, 1992; Straume and Johnson, 1992b). Confidence intervals in most 
cases are not symmetrical, so the magnitudes of the two intervals from 
a determined parameter are not always equivalent. This asymmetry 
makes these intervals more realistic than symmetrical standard deviation 
determinations or linear approximations of confidence intervals that are 
symmetrical around the determined parameter.

Contour maps
	 Contours are a method of profiling a three-dimensional surface 
in a twodimensional format. In this way, the user can visualize the sum 
of squares error space in relation to two parameters (Bates and Watts, 
1988; Johnson and Faunt, 1992). Using the error surface maps illustrated 
in the leastsquares section, one can calculate confidence intervals 
corresponding to the magnitude of the sum of squares on the z-axis. 
Planes drawn parallel to the x-y axes at increasing magnitudes along the 
z-axis will intersect the error surface. When viewed down the z-axis, the 
intercepts will appear as concentric contours. The contours will show 
graphically the magnitude of the confidence intervals on the x- and y-axes 
in relation to the minimum of the sum of squares.

	 Several methods exist for estimating the contours. The actual 
contours for nonlinear regression are asymmetrical, but to save computer 
time, in many cases, linear or symmetric approximations are used to 
calculate elliptical estimations (Figure 9).
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	 The spacing and shape of the contours can indicate how 
well the two parameters being examined are defined by the error 
space. Closer and less elongated (rounder) contours indicate better 
defined parameters.

Figure 9. Actual contour maps (          ) in relation to linear approximations
(- - -) to demonstrate differences in confidence intervals; + represents the
least-squares estimate. (Redrawn from Bates and Watts, 1988, with permission
of John Wiley & Sons, Inc.)
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GOODNESS OF FIT
	 The first fitting attempt for any experiment is usually to the 
single ideal species model. The Mw and Mz determined will give the 
first indication of possible inappropriateness of the model for the 
experimental data. If these molecular weight averages are not equivalent, 
multiple species are indicated. If a monomer molecular weight is known 
from previous experiments, Mw will provide the first indication of the 
stoichiometry of an associating system. But, as mentioned previously, 
nonideality will have opposite effects on the analysis, and this fact should 
be considered in interpretation of results.

RESIDUALS
	 The most sensitive graphical representation for goodness of 
fit, and the best indicator of possible alternative models, is the residual 
plot. Residuals are the difference between each experimental data point 
and the corresponding point on the curve calculated from the model 
equation. Figure 10 shows an example of the desired residuals with a fit 
from a plausible model.

	 A random distribution of points about the zero value is a desired 
diagnostic for a good fit. Also shown are typical patterns of systematic 
errors characteristic of associating and nonideal systems. Thus, the 
patterns of residual plots can suggest additional models for fitting.	
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CHI SQUARE
	 Several mathematical analyses are used for determining 
goodness of fit (Straume and Johnson, 1992a). Of these, the χ2 test is 
probably the most common. Once it is clear that there are no systematic 
trends in the residual plot, the χ2 test provides a quantitative measure for 
the goodness of fit of a particular model. The χ2 statistic is defined as:

over the defined confidence interval or the sum over all data points of 
the residuals squared, normalized to the error estimate for each point. 
The standard error is used in weighting the individual data points. By 
dividing this weighted χ2 value by the number of degrees of freedom, 
the reduced χ2 value, or variance, is obtained. The number of degrees 
of freedom is defined as n - n ́ - 1, where n is the number of data points 
and n ́ is the number of parameters being determined in the analysis. The 
value of the reduced χ2 should approach one if the mathematical model 
accurately describes the data.

PARAMETER CORRELATION
	 Correlation of unknown parameters is another important 
diagnostic. Statistically, the dependence of one parameter on another can 
be calculated in a correlation coefficient. Calculation of these coefficients 
with multiple fitting parameters involves use of covariance matrices to 
obtain the final correlation matrix with correlations between each pair 
of parameters (Bard, 1974; Bates and Watts, 1988). This calculation can 
be complicated and requires use of a computer. Absolute correlation 
between variables results in a correlation coefficient of ± 1.00. No 
correlation results in a value of 0.00. In nonlinear regression techniques, 
correlation coefficients can be determined between all parameters. 
Ideally, these coefficients should be low enough to show little or no 
correlation, and the user must decide according to the model being fitted 
how much correlation is acceptable. As a general rule, no coefficient 
having an absolute value greater than 0.95 would be acceptable. The 
accuracy of values for highly correlated parameters is greatly reduced.

	 The parameters most likely to show the highest correlation 
in a selfassociating system are the association constants. Constraining 
the value of one or more of the correlated parameters, while 
ensuring goodness of fit to the proposed model, can help reduce the 
coefficient values.

χ 2 =
(observed residual -  expected residual)i

2

expected residuali
i

∑Equation 13
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SUMMARY
	 Data analysis is the most important aspect of characterizing a 
self-associating system using the analytical ultracentrifuge. The first level of 
analysis is a qualitative one using diagnostic graphs. At this level questions 
are addressed about homogeneity, nonideality, and whether or not an 
association reaction is occurring. Also, the reversibility of an association 
and an estimate of monomer molecular weight can be determined. 
The next level of analysis involves nonlinear regression analysis for a 
quantitative determination of monomer molecular weight, association 
constants, stoichiometries, and nonideality coefficients. At this level, the 
most accurate information can be obtained using fitting procedures with 
multiple data sets varying both speed and starting concentration. It is 
necessary to test a number of possible model equations describing the 
associating system to find the model that best describes the equilibrium. 
In many cases, varying constrained parameters will accomplish this task. 
Finally, goodness-of-fit graphics and statistics help to distinguish the 
model that best describes the system. If a significant statistical difference 
between models cannot be established, the simplest model should be 
used to describe the system until more data are obtained.
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APPENDIX A: 
A RATIONAL APPROACH 
TO MODELING SELF-
ASSOCIATING SYSTEMS 
IN THE ANALYTICAL 
ULTRACENTRIFUGE
	 This section is intended to provide a rational approach to 
modeling sedimentation equilibrium data for determining stoichiometry, 
association constants, and in certain situations, the degree of nonideality 
of reversible self-associating systems.

1. WHAT QUESTIONS NEED TO BE ANSWERED?
	 Before trying to analyze any data, and before running any 
equilibrium experiments, one should have a clear idea of the questions to 
be asked about a particular system. This helps to design the experiment 
with respect to the question. If, for example, very little is known about 
the system, the experiments should be exploratory in nature and answer 
more qualitative questions. The first step might be to estimate sample 
purity, or the extent of associative behavior, i.e., is the interaction weak, 
moderate, or strong. As more is known about the system, 
follow-up experiments can be tailored to answer more specific 
quantitative questions.

	 Having a sense of which questions are pertinent can also 
determine how much time needs to be spent on a system. It may not 
always be necessary to understand to the last decimal point everything 
about a system.

2. DON’T VARY EVERYTHING AT ONCE
	 The self-association fitting equation, provided as part of the 
XL-A Data Analysis Package, can be used to model up to four interacting 
species. The values of interest usually include one or more of the 
following: the molecular weight of the monomer, the stoichiometry of the 
system, and the association constants. These properties are expressed as 
parameters in a model equation. These parameters are determined by 
solving the appropriate equation, identified by the best-fit curve through 
the data, using a nonlinear curve fitting algorithm. A series of iterative 
guesses are made for each parameter to minimize the least-squares 
response between calculated and experimental data sets. Since these 
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parameters are often unknown, the first impulse in solving for each of 
them is to simultaneously vary all the parameters in the model and let the 
fitting routine sort out the numbers.

	 Although tempting, this approach can lead to problems on 
two fronts: 1) the program may have difficulty converging since the  
error space may appear flat, or 2) if a fit is attained, the accuracy of  
the results may be suspect. With respect to accuracy, the algorithm  
may have converged on a local rather than a global least-squares 
minimum, or the large number of varied parameters may have  
resulted in fitted values that are highly correlated with each other  
and, therefore, statistically questionable.

3. DETERMINE M AND n
	 As a rule, the number of parameters allowed to vary during a fit 
should be kept to a minimum. This often requires advance knowledge of 
the values of some parameters. One of the most important parameters 
to determine is the monomer molecular weight, M. This value can either 
be calculated from the formula molecular weight or determined by 
complementary techniques, or it can be determined through the use of 
the analytical ultracentrifuge. The analytical ultracentrifuge can be used 
to determine M by running the sample under denaturing conditions 
and fitting directly to the molecular weight parameter. [A lower-than-
expected estimate of M can mean that a baseline offset, E, needs to 
be included in the fit (see next section).] Alternatively, the equilibrium 
gradient can be transformed to a Mw vs. concentration plot and the 
curve extrapolated to the ordinate in order to obtain an estimate of M 
(see Figure 11). Reading the curve in the other direction (to the highest 
gradient concentration) and dividing the molecular weight at this point 
by M affords a measure of the highest associative order, n, of the system, 
assuming a high enough loading concentration has been used. (Samples 
are normally run at multiple concentrations and speeds.) It should be 
cautioned that this technique provides only a rough estimate of n, and 
that the value obtained is not above suspicion. An estimate of n that is 
lower than expected can result from the molecular weight at the highest 
gradient concentration being depressed by nonideality effects or high-
molecular weight aggregates that have pelleted. Or, an estimate that is
higher than expected can result from M being depressed by a baseline 
offset, E (see next section). An important consequence of estimating n is 
that it provides the information necessary to narrow the field down to a 
couple of potential associative models. For example, an estimate of n   3.6 
may suggest a monomer-dimer-tetramer or higher order of association 
that isn’t fully assembled. This information also allows one to dismiss 
irrelevant models; for example, fits to monomer-dimers or monomer-
trimers would be inappropriate at this point.
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	 The stoichiometry of a system can also be determined using 
a technique known as a species analysis. This technique involves first 
expressing each species in the model in terms of absorbances. The 
algorithm then converges directly on each of the absorbance terms for a 
series of preselected models, e.g., monomer-dimer, monomer-tetramer, 
etc., or one extended model, e.g., monomer-dimer-tetramer-octamer. In 
this manner, a variety of potential models can be quickly evaluated and 
dismissed in terms of physical reality. For example, a suspected association 
state that converges to a large negative absorbance can probably be ruled 
out. (A large negative absorbance usually means a value several orders 
of magnitude larger than the baseline offset; see next section.) Following 
this initial prescreening, a more refined model containing association 
constants can be used for estimating more substantive values.

4. BASELINE CONSIDERATIONS
	 The baseline offset, E, is included in a model when a correction 
term is needed to account for the presence of any absorbing particulates 
left undistributed in the gradient. Left uncorrected, E can lead to a low 
estimate for Mw,app when fitting to a single ideal species model, or a high 
estimate for n when reading an Mw vs. concentration plot; in the latter 
case, E has a stronger negative effect on M at the lower end of the 
gradient. Since even small values of E, such as 10-2, can play an adverse 
role if left uncorrected in a fit, it is important to test for its presence. E 
can be measured by overspeeding a run and reading the absorbance of 
the trailing gradient (the meniscus-depletion method).
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5. SINGLE DATA FILES, THEN MULTIPLE DATA FILES
	 When dealing with a variety of files collected at multiple 
concentrations and speeds, it is often useful to begin by analyzing 
single data files. This affords the opportunity to inspect each data file 
individually, and either to accept, edit, or reject individual files before they 
can adversely impact a multiple fit with other data files. After examining 
individual files, it is helpful to begin the analysis of multiple data files 
by first grouping the data sets by speeds and channels (if multichannel 
centerpieces were used), before attempting to incorporate all of the data 
files in a fit. Files should be rejected only if there are obvious problems. 
By grouping files in terms of speeds and channels, future concerns over 
certain fit parameters can either be avoided or rationalized by revealing 
them at their source, e.g., a baseline offset inconsistent with trends 
observed in other files, or a window scratch at a certain location.

	 Grouping files of different concentration has the advantage of 
incorporating individual files that collectively span the associative range 
of the system, which can facilitate the identification of the correct model. 
Grouping files in terms of concentration and/or speed can also be used 
as a diagnostic to evaluate the homogeneity and reversibility of a system 
(see section 11).

	 Certain parameters contained in a model are treated differently 
depending on whether single or multiple data files are employed. When 
fitting single data files, it is important to constrain E to a known value as
measured by the meniscus depletion method. Problems can arise if E is
allowed to vary without knowing its value. The reason for this is that E is
highly correlated with other parameters, and the accuracy of each of 
these values can be compromised for the sake of a fit. If the value for E is 
unknown, it is better to leave it at 0. When fitting multiple data files, the
opposite is the case; the baseline term should be allowed to vary. Since
multiple runs are usually made at multiple speeds and concentrations, it is
reasonable to assume that the baseline term will be different for different
concentrations. However, the same sample should have the same value of
E regardless of speed. By allowing the baseline offset to vary, its value is
adjusted with respect to the conditions of each file, and the accuracy 
of the fit is enhanced. When allowed to vary, E is usually given an initial 
guess of 0; it converges reasonably close to each of its measured values.

	 There also exists some commonality between the two fitting 
routines. The absorbance at the reference radius, A0, is treated the  
same way for fits to either single or multiple data files; it should be 
allowed to vary.
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	 Analysis of ideal models for Mw,app can be done using either single 
or multiple data files. Analysis of more complicated models that involve 
additional varying parameters, such as E and K

a
, should be evaluated using 

multiple data files. Multiple data files have the advantage of introducing 
more data points to a fit. Also, a global least-squares minimum often can 
be easier to reach.

6. START WITH THE SIMPLE MODEL FIRST
	 It is always a good idea to start with the simplest case first: the 
single ideal species model. In addition to providing an apparent weight-
average molecular weight, Mw,app, the residuals of the fit can substantiate 
or refute any preconceived notions about the behavior of the system  
(see Figure 10).

7. MODEL IN STEPS
	 One approach to modeling an associating system using multiple 
data  files is to converge on the parameters in a series of iterative steps. 
This approach can help overcome problems the algorithm may have in 
converging on too many parameters. Ideally the monomer molecular 
weight and associative order of the system are known and constrained 
to their appropriate values. If these values are unknown, determining the 
correct model can be very difficult.

	 As mentioned earlier, files can be grouped in terms of speeds 
and/or concentration. This grouping becomes useful for diagnosing the 
associating system as well (see section 11).

	 In the first step, the absorbance at the reference radius and 
the appropriate association constant are allowed to vary. To ensure 
that the algorithm is moving down the error space, parameter guesses 
are given realistic values. Values for parameters obtained from the first 
fit are used as guesses for the next fit when an additional parameter 
is allowed to vary, e.g., the baseline offset. For situations where the 
baseline terms are known, the fitted parameters can be validated. If 
there is close agreement, this can lend additional confidence to the other 
fitted parameters. Alternatively, the first convergence step may include 
the baseline term, with the second step incorporating the association 
constant. There is no single approved method for analyzing all  
associating systems. Each system has its own peculiarities.

8. CHECK FOR PHYSICAL REALITY
	 Although a fit can be evaluated using a variety of sophisticated 
statistics, one of the easiest and most often overlooked methods is 
simply to check the fitted parameters in terms of physical reality. Is the 
molecular weight or association constant consistent with expectations; is 
A0 consistent with the observed gradient; and is the baseline term close 
to zero or the experimentally measured value?
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9. PROBLEMS IN FITTING
	 Sometimes getting a fit to converge can be particularly difficult. 
Assuming the number of parameters allowed to vary has been kept to a 
minimum, the problem may lie in the initial guesses. If the initial guesses 
are too unrealistic, the algorithm can have trouble getting off the flat 
part of the error space. If the association constant is suspected to be at 
fault, there are ways of improving a guess. By knowing the weight-average 
molecular weight (estimated from a single ideal species fit) and dividing 
by the monomer molecular weight, the extent of association may be 
more closely approximated. If, for example, this ratio comes out low with 
respect to the known stoichiometry, this can indicate a weak association, 
and a lower estimate of the association constant may prove a better initial 
guess. (An initial guess of 10-1 or 10-2 for Ka is usually used as a default.)

	 In general, problems in fitting may occur with gradients 
that are either too shallow or too steep, resulting from extremes in 
molecular weight and/or run speed. This is because the algorithm fits 
to an exponential equation and assumes that the gradient follows an 
exponential profile over the entire solution column height, which may 
not always be the case.

	 There may be problems in fitting to a model if the monomer 
is present in minute amounts. Since the models are written in terms of 
monomer concentration, a measurable amount of monomer must be 
present to avoid an ambiguous fit. The fit may be improved by expressing 
the model in terms of the predominant species present in the system. 
In cases where the monomer has assembled irreversibly to a dimer, 
for instance, the stoichiometry of the system may be misidentified as 
monomer-dimer. It may actually be a dimer-tetramer system in which the 
dimer is the lowest molecular weight species present. A run made under 
dissociating conditions using guanidine hydrochloride, for example, may 
prevent this type of error.

	 Another condition that can be problematic occurs when the 
time allowed for a fit is insufficient. The number of loops (iterations) the 
algorithm goes through before quitting is 100. Sometimes by refitting the 
same guesses for a second set of iterations or increasing the number of 
iteration loops, a fit will converge. 

	 Even with the best of intentions and an ideal set of conditions, 
the association may be too complicated to analyze. These models are 
ideally suited for discrete associations, involving up to three species 
(although we allow the capability of modeling up to four species). Trying 
to model to an indefinite system of more than five species, containing 
intermediate irreversible associations, can be too much for this approach. 
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If this turns out to be the case, at least the equilibria have been revealed 
to be highly complex, which is probably more than was known about the 
system before the analysis.

10. MODEL TO SYNTHETIC DATA
	 Using software programs that simulate a variety of ideal 
associative systems can be an invaluable aid to modeling. As well as 
providing examples of fits to simple ideal systems, a simulation program 
can also serve as a platform for confirming actual fits encountered in 
more complicated multicomponent systems. An equilibrium simulation 
program is included as part of the XL-A Data Analysis Package; simeq.exe 
is located on the XL-A Program Disk.

11. THE MODEL AS A DIAGNOSTIC TOOL
	 The advantage of using a model as a diagnostic tool is the variety 
of information that can be revealed about the homogeneity and ideality 
of the system. For example, a single ideal species should yield the same 
Mw,app regardless of initial concentration or speed (see Figures 4 and 6). 
However, as more complicated systems are studied, diagnosing their 
behavior may not always be as simple. The following demonstrates some 
diagnostic manipulations that can be used in evaluating sample behavior 
under optimum conditions. This material is also presented as a flow  
chart in Section 13. Included as an addendum are some examples of  
how diagnosing a system under more realistic conditions can be  
more challenging.

Optimum Diagnostic Conditions:
1. Evaluating an ideal associating system.

	 An ideal associating system should yield either a constant or 
increasing Mw,app with increasing initial concentrations, as read from a Mw 
vs. concentration plot of a mass action association (see Figure 4). With 
increasing speeds, the apparent molecular weight and the association 
constant should remain constant. (Note: an increase in Mw,app with 
increasing concentration indicates the system is still assembling.) A Ka 
that is independent of either speed or concentration indicates a reversible 
associating system. Most protein-protein associations studied at low to 
moderate concentrations (<1 mg/mL) behave nearly ideally.

2. Evaluating a heterogeneous noninteracting system.

	 Heterogeneous, noninteracting behavior in a single ideal or 
associating system can result from either a competing irreversible 
equilibrium or contamination by aggregates (material present as a 
percentage of a mixture). Aggregates are heterogeneous with respect 
to molecular weight and can often be removed by size exclusion 
chromatography. Irreversible equilibria are heterogeneous with respect 
to Ka and may not fractionate as easily. For either condition, the apparent 
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molecular weight and association constant decrease with both increasing 
speeds  and concentrations (see Figures 4 and 6). The reason for this 
is that the higher order components or aggregates are pelleted and no 
longer contribute to a fit.

	 For an associating system containing higher order aggregates, the
stoichiometry, n, should converge to a higher value (at a given speed or
concentration) when allowed to vary.
	
3. Evaluating for nonideality.

	 As a general rule, there should be a good reason for including 
the nonideality term, B, in a fit. Casually including B in a model to see if a 
fit is improved is not the way to approach this parameter. Since legitimate 
parameter values are typically small (10-3-10-4), indicating a fair amount of 
nonideality, forcing B into a fit can corrupt its thermodynamic significance. 
Conditions that can warrant the inclusion of B are: a weight-average 
molecular weight dropping with increasing concentration, or a sample 
suspected to be highly charged or asymmetric. It should be noted that 
systems will begin to exhibit nonideality effects when pushed to higher 
concentrations. For nonideal systems behaving as a single species, B is 
typically given an initial guess of 10-4 and converges to a positive number 
during a fit.

	 Including B in an associating system can be considerably more 
difficult. The easiest case is if Ka and B are both large, e.g., Ka = 105 M-1 
and B = 0.01 mL/g (with an approximate extinction coefficient of 1 at 
A280). It also helps if the equilibrium is a finite one and the final assembly is 
complete at relatively low concentrations. This allows any nonideality to
be observed in near isolation at high concentrations. For systems of this
type, both B and Ka may be solved simultaneously.

	 For systems where the nonideality term is very weak, B may be 
obscured by the association. For systems of this type, it may be necessary 
to determine each parameter separately. One method that has proved 
successful (Laue et al., 1984 ) is to neglect nonideality when fitting for 
Ka, then to go back with a fixed estimate of B and compare the fits. For 
situations of this type, values for B are based on the size, shape, and 
estimated charge of the molecules using equations given in Tanford (1961).

Realistic Diagnostic Conditions
	 A variety of competing situations may exist that can make 
evaluation of sample behavior very difficult. Below are two scenarios.
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1. Association and nonideality in the same system.

	 For a nonideal associating system, the sample may exhibit 
behavior consistent with an ideal noninteracting model. The reason 
is that the increase in apparent molecular weight with increasing 
concentration for an associating system is offset by a decrease in the 
molecular weight for a nonideal system. The net effect may be a constant 
apparent molecular weight with increasing concentration. If this situation 
is suspected, one solution may be to minimize the effect of nonideality. If 
the nonideality is suspected to occur from crowding or excluded volume 
effects, the sample may be run under more dilute conditions. If the 
nonideality is suspected to result from charge effects, the sample may be 
run in a higher ionic strength buffer.

2. Association and heterogeneity in the same system.

	 If an ideal associating system contains a competing irreversible 
equilibrium, a condition similar to the above may occur. Since increases in 
speed or concentration have opposite effects on the direction of change 
in the apparent molecular weight, it may be difficult to identify any of the 
associative states.

12. TEST THE FIT AND THE MODEL
	 Before accepting a fit, it is a good idea to test it. One technique 
involves making guesses on either side of a fitted parameter to determine 
whether the algorithm converges back to the same value. Another 
technique involves allowing all the fitted parameters in question to vary 
in a final iterative step to see if they all return to their respective values. 
(Note: this last technique may not work for parameters that are too 
highly correlated, i.e., with correlation coefficients > 0.95.) If, after this 
step, the fit is still in question (based on fit values, statistics, or residuals), 
an additional term may need to be considered, such as the nonideality 
coefficient, or the presence of higher order aggregates that may be 
throwing off the fit. Or perhaps the wrong model was selected. Nagging 
doubts about a fit or a model can often be dispelled by repeating a set of 
experiments with a fresh preparation.

	 Comparisons with other nonlinear fitting routines may 
yield slightly different values. This can be due to differences in how 
algorithms converge on a least-squares minimum or to rounding 
errors between algorithms.

13. FLOW CHART
	 The flow chart on page 39 is provided as an aid to adapting a 
rational approach to modeling. The order of analysis appears on the left 
and follows a vertical stepwise approach. The center columns show the 
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affected parameters, while the column to the far right identifies the 
associative state being tested.

14. LIMITATIONS
	 Modeling is not always straightforward, and there may appear, at 
times, a certain level of ambiguity in a fit. Competing models can appear 
indistinguishable, and certain fit criteria can run contrary to common 
sense. In sedimentation analysis, there are a variety of limitations or 
sources for error that can lead to this uncertainty. While some 
conditions leading to ambiguous fits can be prevented through 
careful experimental design, others cannot, e.g., problems inherent 
to an iterative least-squares process.

	 The most obvious condition affecting a fit concerns sample 
preparation. There is no substitute for having a clean sample. 
Heterogeneous aggregates present in a sample can wreak havoc during 
modeling. Purification through size exclusion chromatography is suggested 
as the method of choice (Laue, 1992). Dialysis can be effective if the 
contaminants are very small.

	 Other conditions that can affect a fit range from physical 
aberrations, such as dirty windows, to experimental conditions (e.g., 
inappropriate speed selection), to data collection (e.g., not enough data 
points, averages, or data sets), to algorithm limitations (e.g., convergence 
on a local rather than a global least-squares minimum), to inequities in 
modeling (e.g., improper model selection).

	 It is important to emphasize that there are systems too 
complicated for this approach, or any approach. Systems containing 
multiple species, for example, can provide at best only a rough order of 
approximation in their interpretation. This should not be construed as a 
limitation of sedimentation analysis or modeling, but rather a reflection of 
the level of complexity present in nature.
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APPENDIX B: PARTIAL 
SPECIFIC VOLUME
	 The partial specific volume (v̄) is defined as the change in volume 
(in mL) of the solution per gram of added solute. Typically, for proteins, 
an error in this parameter is magnified threefold in calculating the 
molecular weight, so it is important to obtain accurate values for v̄. An 
extensive discussion and tabulation of values for partial specific volumes 
can be found in a review by Durschlag (1986). Two methods are generally 
used for the experimental measurement of v̄: densitometry or analytical 
ultracentrifugation in solvents with differing isotope composition. 
Densitometry is the most accurate, but requires expensive 
instrumentation and large amounts of solute. Use of solvents containing 
D2O vs. H2O in parallel experiments in the ultracentrifuge allows one to 
solve for v̄ in the equations:

where MH2O and MD2O are the buoyant molecular weights in H2O and 
D2O, respectively, and ρ1 and ρ2 are the densities of the two solvents.

	 An alternative method is to estimate v̄ based on the 
sample’s composition. Comparisons with experimentally derived 
values indicate that estimates based on protein amino acid compositions 
are typically good to within 1-2%. Estimates for conjugated proteins, 
with carbohydrate moieties for example, can lead to greater errors.
Hydration of molecules is another source of error that must be 
considered in the calculation.

	 Partial specific volume is usually estimated from composition 
using the method of Cohn and Edsall (1943):

where v̄c is the calculated partial specific volume, Wi is the 
weight percent of the ith component, Ni is the number of residues, 
Mi is the molecular weight of the corresponding component (for amino 

  MH2O = M (1 − vρ1)

  MD2O = M (1 − vρ2 )

Equation 14A

Equation 14B

  

vc =

Wivi
i

∑
Wi

i
∑

=

N i M ivi
i

∑
N i M i

i
∑

Equation 15
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acids, the residue molecular weight minus 18) and v̄ i is the partial specific 
volume of the component. Tables 1-4 show some representative values 
as reported by Durschlag (1986). This calculation is for 25°C and can be 
adjusted for a temperature range of 4-45°C using the equation:

where v̄T is the partial specific volume at temperature T (in Kelvin) and
v̄25 is the partial specific volume calculated from equation 15 at 25°C 
(Laue, 1992).

    vT = v25 + [4.25 ×10−4 (T − 298.15)]Equation 16
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1 Reprinted from Laue et al. (1992) with permission of Royal Society of
Chemistry; based on values from Cohn and Edsall as presented in
Durschlag (1986).

2 Used for calculation of φ in 6 M guanidine-HCl.
3 Used for calculation of φ in 8 M urea.
4 Values for Asx and Glx are averages of acid and amide forms. Values for

Unk are  average of all amino acids.
5 Based on value from Zmyatnin as presented in Durschlag (1986).

 AMINO 
ACID Mr

v̄
(mL/g)

 HYDRATION

mol-H2O mol-aa mol-H2O mol-aa

(pH 6-8)2 (pH 4)3

Ala 71.1 0.74 1.5 1.5

Arg 156.2 0.70 3 3

Asn 114.1 0.62 2 2

Asp 115.1 0.60 6 2

Asx4 114.6 0.61 4 2

Cys 103.2 0.635 1 1

2Cys 204.3 0.63 - -

Gln 128.1 0.67 2 2

Glu    129.1 0.66 7.5 2

Glx4 128.6 0.665 4.8 2

Gly 57.1    0.64 1 1

His 137.2 0.67 4 4

Ile   113.2  0.90 1 1

Leu 113.2 0.90 1 1

Lys  128.2   0.82 4.5 4.5

Met 131.2 0.75 1 1

Phe 147.2    0.77 0 0

Pro 97.1 0.76 3 3

Ser 87.1 0.63 2 2

Thr 101.1 0.70 2 2

Trp 186.2    0.74 2 2

Tyr 163.2 0.71 3 3

Unk4 119.0 0.72 2.4 2

Val 99.1 0.86 1 1

Table 1. Amino Acids1 at 25°C
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1 Excerpted from Laue et al. (1992); values of  v̄  excerpted from 
Durschlag (1986).

CARBOHYDRATE Mr
v̄

(mL/g)

Fructose 180 0.614

Fucose 164 0.671

Galactose 180 0.622

AGlucose (calculated) 180 0.622

         (0.5 M) 180 0.623

      (3 M) 180 0.638

Hexose 180 0.613

Hexosamine 179 0.666

Sucrose (0.05 M) 342 0.613

                 (0.1-0.2 M) 342 0.616

        (1 M) 342 0.620

Lactose (0.1 M) 342 0.606

               (0.4 M) 342 0.610

Mannose 180 0.607

Methyl-pentose 165 0.678

N-Acetyl-galactosamine 221 0.684

N-Acetyl-glucosamine 221 0.684

N-Acetyl-hexosamine 221 0.666

N-Acetyl-neuraminic acid 308 0.584

Sialic acid 308 0.584

Table 2. Carbohydrates at 20°C1
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1 Excerpted from Laue et al. (1992); values of v̄ excerpted from  
Durschlag (1986).

2 cmc = critical micelle concentration.
3 Determined at 25°C.

1 Excerpted from Laue et al. (1992); values of v̄ excerpted from  
Durschlag (1986).

Table 4. Miscellaneous at  20°C1

DENATURANT Mr
v̄

(mL/g)

Guanidine HCl (lim c  >0) 96 0.70

(1 M) 96 0.732

(2 M) 96 0.747

(6 M) 96 0.763

Urea (lim c  >0) 60 0.735

(1 M) 60 0.745

(8 M) 60 0.763

DOC sodium deoxycholate

                                 (below and above cmc2) 0.779

SDS sodium dodecyl sulfate

             (below cmc) 60 0.814

               (above cmc)3 60 ~0.86

                           (above cmc in H2O)3 60 0.854

                                  (above cmc 0.1 M NaCl)3 60 0.863

Triton X-100 (above cmc) 0.913

Tween-80 (above cmc)2 0.896

SUBSTANCE v̄
(mL/g)

Acetyl-CoA 0.638

ATP 0.44

CTP 0.44

Ethanol 1.18

Glycerol (10%) 0.767

              (20%) 0.768

              (30%) 0.770

              (40%) 0.772

Table 3. Denaturants at 20°C1
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	 The effects of pH on partial specific volume are usually minor 
and are generally ignored in most calculations. However, in instances 
where changes in structure such as unfolding may occur, large errors 
in v̄ may be observed. These structural changes can be monitored by 
methods such as circular dichroism to ensure the correct calculation for v̄.

	 Experiments are often run in the presence of denaturants such 
as urea or guanidine-HCl. These compounds affect partial specific volume 
through preferential binding of the denaturant to the protein. 
Calculations, in this case, must take into account the binding of denaturant 
as well as the effect it has on the hydration of the molecule (Durschlag, 
1986; Lee and Timasheff, 1974, 1979; Prakash and Timasheff, 1981). In 
these cases, v̄ must be replaced by φ, the apparent isopotential partial 
specific volume. Generally, increasing ionic strength results in a linear 
increase in φ. The hydration effects of urea and guanidine-HCl result in a 
nonlinear relationship, however. In these cases, φ replaces v̄ and can be 
determined by:

where v̄ is from equation 15, ρ is the solvent density, v̄3 is the partial 
specific volume of the denaturant, A3 is the number of grams of 
denaturant bound to the protein, g3 is the number of grams of  
denaturant per gram of water and A1 is the hydration in grams  
of water per gram of protein. (Note: this equation, as printed in  
Laue et al., 1992, contains an error.) 

  
φ = v -(1

ρ − v3)(A3 − g3A1)Equation 17
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Table 5 shows the values for 6 M guanidine-HCl and 8 M urea at 20°C
(Lee and Timasheff, 1974, 1979; Prakash and Timasheff, 1981).

Table 5. φ for Proteins in 6 M Guanidine-HCl1 and 8 M Urea2

1 Values excerpted from Lee and Timasheff (1974).
2 Values excerpted from Prakash et al. (1981).

	 A3 is calculated for both urea and guanidine-HCl assuming  
one molecule of denaturant bound to every pair of peptide bonds  
plus one for every aromatic side chain (including histidine) using the 
following equations:

where Nt is the total number of amino acids, and Naromatic is the number  
of aromatic amino acids. For 6 M guanidine-HCl at 20°C, ρ = 1.1418 g/
mL, v̄3 = 0.763 mL/g and g3 = 1.007 g guanidine-HCl per g H2O. For  
8 M urea at 20°C, ρ = 1.1152 g/mL, v̄3 = 0.763 mL/g and g3 = 0.752 g 
urea per g H2O.

	 The assumptions in these calculations have been tested in the 
determination of v̄ from the amino acid composition of a protein. The 
methods are assumed to hold true for most non-amino-acid constituents 
as well, but have not been tested to as great an extent. If there is any 
question about the validity of a calculation, one might consider confirming 
v̄with an experimental method since an accurate value is critical for 
further analysis.

A =
moles of denaturant

moles of protein
×

Mw,denaturant

Mw,protein

  

moles of denaturant

moles of protein
=

N t −1

2
+ Naromatic

Equation 18

Equation 19

PROTEIN v̄
(native)

φ
(6 M guanidine-HCl)

φ
(8 M urea)

Lima bean

      trypsin inhibitor 0.732 0.698 0.691

Ribonuclease A 0.696 0.694 0.695

α-Lactalbumin 0.704 0.698 0.699

Lysozyme 0.702 0.694 0.700

β-Lactoglobulin 0.751 0.719 0.719

Chymotrypsinogen A 0.733 0.712 0.720

α-Chymotrypsin 0.738 0.713 0.714
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APPENDIX C: 
SOLVENT DENSITY
	 Density (ρ) is simply the mass (in g) of one mL of solvent 
and is dependent on temperature and composition. As with v̄, ρ can 
be a source of error in molecular weight calculations, so that a value 
accurate to 4-5 decimal places is usually desirable. Solvent density can 
be measured with a pycnometer, but extensive published data permit 
accurate calculations that account for both temperature and buffer 
composition (Johnson and Frazier, 1985; Wolf et al., 1986).

	 The solvent density can be corrected to the experimental 
temperature using the equation of Kell for pure water (ρT) as modified by 
Laue et al. (1992) to yield cgs units:

where T is the temperature in °C and the factor, 
1.000028 × 10-3 , converts the units from kg/m3 to g/mL. Densities 
calculated in this manner are good to at least five decimal places from 
0-100°C. Temperature corrections for isotopes of water are different 
(Laue, 1992; Steckel and Szapiro, 1963) and will not be discussed here.

	 The density of a buffer or any other solution can be estimated 
by summing the density increments calculated for each component 
(Svedberg and Pedersen, 1940). Density increments for each 
component can be calculated using the polynomial function:

where Δρ is the density increment at molar concentration ci. The 
coefficients Ai to Fi are fitted parameters using tabulated values of ρ 
as a function of ci, and are determined using least-squares procedures 
(Johnson and Frazier, 1985). Values of A-F excerpted from Laue (1992) 
for some common buffer components are shown in Table 6.
 

    

ρT = 1.000028 ×10-3[999.83952 +16.945176T
1 + (16.879850 ×10-3 T ) ]

−1.000028 ×10-3[(7.9870401 ×10-3T 2 ) + (46.170461 ×10-6 T3 )
1 + (16.879850 ×10-3T) ]

+1.000028 ×10-3[(105.56302 ×10-9 T 4 ) − (280.54253 ×10-12 T 5 )
1 + (16.879850 ×10-3T ) ]

Equation 20

∆ρci
 = (Ai + Bici

1 ⁄2 + Cici + Dici
2 + Eici

3 +Fici
4) - 0.998234Equation 21
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	 The values for A-F fit well to density data for simple salts. For 
organic salts and alcohols, however, some systematic deviations are 
apparent in the fit to determine A-F, and even though errors may be 
small, the polynomial model may not be adequate for this calculation.

	 Using density increments, the solution density at  
temperature T is:

where ρT,b is the calculated density, ρT/0.998234 is the temperature 
correction factor, and ΣΔρCi is the sum of density increments for  
buffer components. 

	 All density correction calculations neglect the contribution of 
macromolecular solutes. Both high concentration and redistribution of the
macrosolute can affect these values. Also, redistribution of the solvent,
while usually negligible, should be examined. As with  v̄ calculations, ρ
calculations are, for the most part, accurate. If, however, any doubt exists,
one should use experimental methods for density measurement.

ρT,b =
(0.998234 + ∆ρci∑ )ρT

0.998234

Equation 22
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